optimization Package

optimization Package

pypr.optimization.minimize(X, f, df, length, verbose=False, return_result=False, callback=None)

This is Carl Edward Rasmussen’s minimize method rewritten in Python.

Inputs:

X: Input for the function f.

f: The function to be minimized. f is a method that takes X as input and provides af function evaluation.

df: The function gradient, evaluated at X.

length: The maximum number of line searches.

callback: An optional user-supplied function to call after each iteration.
Called as callback(Xk), where Xk is the current parameter vector.
Returns: By default the function value for each iteration, but if
return_result is set to True, then it returns a tuple containing (function value, final function inputs).

minimize Module

pypr.optimization.minimize.minimize(X, f, df, length, verbose=False, return_result=False, callback=None)

This is Carl Edward Rasmussen’s minimize method rewritten in Python.

Inputs:

X: Input for the function f.

f: The function to be minimized. f is a method that takes X as input and provides af function evaluation.

df: The function gradient, evaluated at X.

length: The maximum number of line searches.

callback: An optional user-supplied function to call after each iteration.
Called as callback(Xk), where Xk is the current parameter vector.
Returns: By default the function value for each iteration, but if
return_result is set to True, then it returns a tuple containing (function value, final function inputs).
pypr.optimization.minimize.rosenbrock(x)

Returns the rosenbrock function value for x. Inputs x1, x2, .., xn are given column wise. Input vetors as rows.

pypr.optimization.minimize.rosenbrock_d(x)

Returns the values of the partial derivative of the rosenbrock function. Inputs x1, x2, .., xn are given column wise. Input vetors as rows.

Table Of Contents

Next topic

preprocessing Package

This Page