Rescale and shift each feature individually, so that it gets a mean of zero, and a unity standard deviation. The scaling and shifting are based upon X
Parameters : | X : np array
handleStd0 : bool, optional
|
---|
Methods
invtransform | |
transform |
Find the inverse transformation.
Parameters : | iX : np array
|
---|---|
Returns : | X : np array
|
Find the normalized values for the samples in X, so that each input will have zero mean and unit standard deviation.
Parameters : | X : np array
Returns : ——- : iX : np arrray
|
---|
Bases: pypr.preprocessing.normalizer.Normalizer
Principal Component Analysis (PCA)
Parameters : | X : np array
normalize : bool, optional
whitening : bool, optional
|
---|
Methods
get_eig | |
invtransform | |
transform |
Eigen values.
Returns : | w : np array
v : np array
|
---|
Returns Z projected back in to the original vector space.
Parameters : | Z : np array
|
---|---|
Returns : | X : np array
|
Projects X into the new vector space found by the PCA.
Parameters : | X : np array
dim : int, optional
|
---|---|
Returns : | Z : np array
|