Index

A | B | C | D | E | F | G | I | K | L | M | N | P | R | S | T | W

A

ANN (class in pypr.ann.ann), [1]

B

boxpierce() (in module pypr.stattest.ljungbox), [1]

C

cfCovarianceFunction (class in pypr.gp.covar_funcs)
cfJitter (class in pypr.gp.covar_funcs)
cfNoise (class in pypr.gp.covar_funcs)
cfSquaredExponentialARD (class in pypr.gp.covar_funcs)
cfSquaredExponentialIso (class in pypr.gp.covar_funcs)
cfSum (class in pypr.gp.covar_funcs)
clear_temp() (pypr.gp.covar_funcs.cfCovarianceFunction method)
(pypr.gp.covar_funcs.cfSquaredExponentialARD method)
(pypr.gp.covar_funcs.cfSum method)
cond_dist() (in module pypr.clustering.gmm), [1]
Cov_problem, [1]

D

derivative() (pypr.gp.covar_funcs.cfCovarianceFunction method)
(pypr.gp.covar_funcs.cfJitter method)
(pypr.gp.covar_funcs.cfNoise method)
(pypr.gp.covar_funcs.cfSquaredExponentialARD method)
(pypr.gp.covar_funcs.cfSquaredExponentialIso method)
(pypr.gp.covar_funcs.cfSum method)
df() (pypr.gp.GaussianProcess.GPR method), [1]

E

em() (in module pypr.clustering.gmm), [1]
em_gm() (in module pypr.clustering.gmm), [1]
err_func() (pypr.helpers.modelwithdata.ModelWithData method)
err_func_d() (pypr.helpers.modelwithdata.ModelWithData method)
error_with_weight_penalty() (pypr.ann.ann.WeightDecayANN method)
eval() (pypr.gp.covar_funcs.cfCovarianceFunction method)
(pypr.gp.covar_funcs.cfJitter method)
(pypr.gp.covar_funcs.cfNoise method)
(pypr.gp.covar_funcs.cfSquaredExponentialARD method)
(pypr.gp.covar_funcs.cfSquaredExponentialIso method)
(pypr.gp.covar_funcs.cfSum method)

F

f() (pypr.gp.GaussianProcess.GPR method), [1]
find_centroids() (in module pypr.clustering.kmeans), [1]
find_density_diff() (in module pypr.clustering.gmm), [1]
find_distance() (in module pypr.clustering.kmeans), [1]
find_flat_weight_no() (pypr.ann.ann.ANN method), [1]
find_hyperparameters() (pypr.gp.GaussianProcess.GPR method), [1]
find_intra_cluster_variance() (in module pypr.clustering.kmeans), [1]
find_likelihood_der() (pypr.gp.GaussianProcess method)
(pypr.gp.GaussianProcess.GaussianProcess method), [1]
find_membership() (in module pypr.clustering.kmeans), [1]
find_weight() (pypr.ann.ann.ANN method), [1]
fit_data() (pypr.gp.GaussianProcess method)
(pypr.gp.GaussianProcess.GaussianProcess method), [1]
forward() (pypr.ann.ann.ANN method), [1]
forward_get_all() (pypr.ann.ann.ANN method), [1]

G

gauss_ellipse_2d() (in module pypr.clustering.gmm), [1]
GaussianProcess (class in pypr.gp)
(class in pypr.gp.GaussianProcess), [1]
generate() (pypr.gp.GaussianProcess method)
(pypr.gp.GaussianProcess.GaussianProcess method), [1]
get_af_summed_weighs() (pypr.ann.ann.ANN method), [1]
get_base_error_func() (pypr.ann.ann.ANN method), [1]
get_eig() (pypr.preprocessing.PCA method)
(pypr.preprocessing.pca.PCA method)
get_error_func() (pypr.ann.ann.ANN method), [1]
(pypr.ann.ann.WeightDecayANN method), [1]
get_flat_weight() (pypr.ann.ann.ANN method), [1]
get_flat_weights() (pypr.ann.ann.ANN method), [1]
get_num_layers() (pypr.ann.ann.ANN method), [1]
get_parameters() (pypr.helpers.modelwithdata.ModelWithData method)
get_params() (pypr.gp.covar_funcs.cfCovarianceFunction method)
(pypr.gp.covar_funcs.cfJitter method)
(pypr.gp.covar_funcs.cfNoise method)
(pypr.gp.covar_funcs.cfSquaredExponentialARD method)
(pypr.gp.covar_funcs.cfSquaredExponentialIso method)
(pypr.gp.covar_funcs.cfSum method)
get_weight_copy() (pypr.ann.ann.ANN method), [1]
gm_assign_to_cluster() (in module pypr.clustering.gmm), [1]
gm_log_likelihood() (in module pypr.clustering.gmm), [1]
gmm_em_continue() (in module pypr.clustering.gmm), [1]
gmm_init() (in module pypr.clustering.gmm), [1]
gmm_pdf() (in module pypr.clustering.gmm), [1], [2]
GPR (class in pypr.gp.GaussianProcess), [1]
gradient() (pypr.ann.ann.ANN method), [1]
(pypr.ann.ann.WeightDecayANN method)
gradient_descent_train() (pypr.ann.ann.ANN method), [1]

I

invtransform() (pypr.preprocessing.Normalizer method)
(pypr.preprocessing.PCA method)
(pypr.preprocessing.normalizer.Normalizer method)
(pypr.preprocessing.pca.PCA method)

K

k_fold_cross_validation() (in module pypr.helpers.helpers)
kmeans() (in module pypr.clustering.kmeans), [1]

L

lbqtest() (in module pypr.stattest.ljungbox), [1]
ljungbox() (in module pypr.stattest.ljungbox), [1], [2]
logmulnormpdf() (in module pypr.clustering.gmm), [1]

M

marg_dist() (in module pypr.clustering.gmm), [1]
minimize() (in module pypr.optimization), [1]
(in module pypr.optimization.minimize)
ModelWithData (class in pypr.helpers.modelwithdata)
MSE() (in module pypr.helpers.helpers)
mulnormpdf() (in module pypr.clustering.gmm), [1]

N

Normalizer (class in pypr.preprocessing)
(class in pypr.preprocessing.normalizer)

P

PCA (class in pypr.preprocessing)
(class in pypr.preprocessing.pca)
plot_gpr() (in module pypr.gp.plot_gp)
predict() (in module pypr.clustering.gmm), [1]
(pypr.gp.GaussianProcess.GPR method), [1]
pypr.__init__ (module)
pypr.ann (module)
pypr.ann.activation_functions (module), [1]
pypr.ann.ann (module), [1]
pypr.ann.error_functions (module), [1]
pypr.clustering (module)
pypr.clustering.gmm (module), [1], [2], [3]
pypr.clustering.kmeans (module), [1]
pypr.gp (module)
pypr.gp.covar_funcs (module)
pypr.gp.GaussianProcess (module), [1]
pypr.gp.gp_unit_tests (module)
pypr.gp.info (module)
pypr.gp.plot_gp (module)
pypr.helpers (module), [1]
pypr.helpers.helpers (module)
pypr.helpers.modelwithdata (module)
pypr.helpers.wrappers (module), [1]
pypr.optimization (module)
pypr.optimization.minimize (module)
pypr.preprocessing (module)
pypr.preprocessing.normalizer (module)
pypr.preprocessing.pca (module)
pypr.stattest (module)
pypr.stattest.ljungbox (module), [1], [2], [3]
pypr.version (module)

R

regression() (pypr.gp.GaussianProcess method)
(pypr.gp.GaussianProcess.GaussianProcess method), [1]
RMSE() (in module pypr.helpers.helpers)
rosenbrock() (in module pypr.optimization.minimize)
rosenbrock_d() (in module pypr.optimization.minimize)

S

sac() (in module pypr.stattest.ljungbox), [1], [2]
sample_gaussian_mixture() (in module pypr.clustering.gmm), [1], [2]
set_flat_weight() (pypr.ann.ann.ANN method), [1]
set_flat_weights() (pypr.ann.ann.ANN method), [1]
set_parameters() (pypr.helpers.modelwithdata.ModelWithData method)
set_params() (pypr.gp.covar_funcs.cfCovarianceFunction method)
(pypr.gp.covar_funcs.cfJitter method)
(pypr.gp.covar_funcs.cfNoise method)
(pypr.gp.covar_funcs.cfSquaredExponentialARD method)
(pypr.gp.covar_funcs.cfSquaredExponentialIso method)
(pypr.gp.covar_funcs.cfSum method)
setUp() (pypr.gp.gp_unit_tests.TestSequenceFunctions method)
shuffle() (in module pypr.helpers.helpers)
shuffle_rows() (in module pypr.helpers.helpers)
sq_dist() (in module pypr.gp.covar_funcs)

T

test_cfNoise_derivative() (pypr.gp.gp_unit_tests.TestSequenceFunctions method)
test_cfSquaredExponential_derivative() (pypr.gp.gp_unit_tests.TestSequenceFunctions method)
test_cfSquaredExponentialARD_der() (pypr.gp.gp_unit_tests.TestSequenceFunctions method)
test_cfSquaredExponentialArd_eval() (pypr.gp.gp_unit_tests.TestSequenceFunctions method)
test_cfSquaredExponentialIso_eval() (pypr.gp.gp_unit_tests.TestSequenceFunctions method)
test_generate() (pypr.gp.gp_unit_tests.TestSequenceFunctions method)
test_GPR_partial_derivatives() (pypr.gp.gp_unit_tests.TestSequenceFunctions method)
test_init_params() (pypr.gp.gp_unit_tests.TestSequenceFunctions method)
test_nllikeliness_and_der() (pypr.gp.gp_unit_tests.TestSequenceFunctions method)
test_optimization() (pypr.gp.gp_unit_tests.TestSequenceFunctions method)
test_regression() (pypr.gp.gp_unit_tests.TestSequenceFunctions method)
test_set_params() (pypr.gp.gp_unit_tests.TestSequenceFunctions method)
test_sq_dist() (pypr.gp.gp_unit_tests.TestSequenceFunctions method)
test_sum_derivative() (pypr.gp.gp_unit_tests.TestSequenceFunctions method)
TestSequenceFunctions (class in pypr.gp.gp_unit_tests)
transform() (pypr.preprocessing.Normalizer method)
(pypr.preprocessing.PCA method)
(pypr.preprocessing.normalizer.Normalizer method)
(pypr.preprocessing.pca.PCA method)

W

WeightDecayANN (class in pypr.ann.ann), [1]
wrap_model() (in module pypr.helpers.wrappers), [1]